

FORUM

For the latest in red meat R&D

How to best use your feedbase What's the next level?

Basil Doonan

Pinion Advisory

Outline

- 1. Getting the most from your feedbase
- 2. Improving pasture utilisation
- 3. Taking grazing management to the next level
- 4. Take home messages
- 5. Tools and resources

Linking productivity to profit

Methodology and Practice

- Method
 - Set stocked
 - Rotational
 - Random movement
 - Motivated movement (time)
 - Motivated movement (ground cover/mass)
 - Motivated movement (rainfall)
 - Motivated movement (morphology)
- Practice
 - BMP
 - Any other!

Questainabladiab

Getting the most out of your feedbase

Work with mother

nature

- Work out the costs and benefits of the methods
- Know your fodder flow
- Match your demand and supply
- Run a high Stocking Rate relative to Carrying Capacity
 - Easily said
- Take control of the plant and animal interface

Methodology for the next level?

- Rotational grazing
 - 50-100% more grown
 - Rest must be based on morphology
 - Quantity
 - Quality
 - Survival
 - Increased investment
 - Infrastructure
 - Time/labour
 - Skill development

Plant process

Right plant right place						
	Species	LS for Grazing				
	Ryegrass	2-3				
	Cocksfoot	3-4				
	Phalaris	4-5				
	Prairie Grass	4-5				
	Fescue	4-5				
	Kikuyu	2-5				

The process

• How all plants grow

Regrowth – say for ryegrass (3 leaf plant)

- First leaf:
 - WSC begins to be stored again
 - Roots begin actively growing
 - However, there is an imbalance in minerals, WSC and protein in the leaves
- At this stage, plants are most vulnerable to re-grazing

Regrowth: second leaf

- When 2 leaves have emerged:
 - WSC reserve levels have been built up enough for plants to be grazed again
 - Roots are actively growing
 - Tillering starts again
- The balance between minerals in leaves becomes more in line with animal requirements

Regrowth: third leaf

- When 3 leaves have emerged:
 - WSC levels have been fully restored
 - Root growth and tillering are fully active
 - Overall live top growth is at a maximum
- After this quality declines, and utilisation decreases, due to leaf death

Remember

- If we waste a leaf
 - We can loose 300-500 kg DM per grazing
 - 100 kg Lwt/ha
- If we fail to grow the leaves
 - We can lose 1,000-1,500 kg DM/ha
 - 250 kg Lwt/ha

Quality

Leaf	NSC/DIP	RDN (%)	Ca:P	K/(Ca + Mg)	Energy (MJ)
1	1:2	35	1:1	8	20%
2	1:1	25	1.5:1	4	50%
3	2:1	24	2:1	2.5	100%
Optimal	2:1	19	2:1	2.2	100%

Dept Primart IND & Figheries PO Box 303

7310

Work Order: 07-08-098 Date Received: 14-Aug-07 Date Reported: 17-Aug-07

Work	ID:		TODF	Demostr	ation	Farm
submi	thed	by:	Chrig	topher	Haynes)

TAS

Each of your samples has been allocated a laboratory number and can be identified as follows:

<u>Lab No</u>	<u>Your</u> sam	<u>ple_identification</u>	_Collected	_Bv	
02-A	Pasture,	<i>B</i> yeg tazz	13/08/07		_

Results of Analysts:

DEVONPORT

ı	<u>Test</u>	<u>Method</u>	<u>Daits</u>	<u>02-A</u>
	Moisture	Wet	%	84.1
	Dry Matter	Wet	%	15.9
	Crude Procein (N x 6.25)	NIR	% of dry matter	26.3
	Nautral Detergent Fibre	NIR	& of dry matter	43.5
	Digestibility (DMD)	NIR	% of dry matter	86.0
	Digestibility (DOMD)	Calculated	<pre>% of dry matter</pre>	79.7
	Metabolisable Energy	Calculated	MJ/kg DM	13.2

Quality

Quality

Survival

- Tillers live for about a year!
- Overgrazing decreases root reserves of energy
- If grazing duration is longer than 2-3 consecutive days
 - Plant energy reserves depleted (less than 1 leaf)
 - Regrowth is significantly compromised (10-30%)
- If greater than 5 consecutive days
 - Can lead to a 40-60% reduction in re-growth
 - And 40-50% tiller death

Fulkerson, W 1986

Rotation or rest

- Is a function of leaf appearance rate
 - Quality/quantity/survival
- Daily area fixed!

Measuring Pasture

Animal requirements

- We use simple rules of thumb (kg DM/hd)
- Cattle
 - Maintenance (Lwt/100 + 1 kg DM)
 - Pregnancy (plus 1-3 kg DM)
 - Lactation (plus 4 kg DM)
 - Liveweight (for each kg Lwt add 4 kg DM)
- Sheep
 - Maintenance is LW x 2/100 kg DM/day
 - Pregnancy is 1.0 kg DM/ewe/day
 - Lactation requires 1-1.5 kg DM/lamb
 - Liveweight gain is 4 kg DM/kg LW

Allows us to marry plant production to animal requirement

Practice/capability

	Profit
Feedbase	70%
Business	40%
People	30%
Operational	15%

Hoekema 2002

The problem

Maintenance Production Purchased feed Total

Total pasture utilisation /ha

Pasture/ha for maintenance Pasture/ha for beef production

Cents per kilogram of Drymatter

DSE/ha

ROC

MJ Pasture 18754306 1875431 6226800 622680 0 2498111 3762 kg/DM/ha 2824 kgDM/ha 75% 938 kgDM/ha 25% \$0.02 13.9 2.4%

Solution

Maintenance Production Purchased feed Total

Total pasture utilisation /ha

Pasture/ha for maintenance Pasture/ha for beef production

Cents per kilogram of Drymatter

DSE/ha

ROC

NALA DOC Bruces

- 60 ha
- Stanley (700 mm)
- Farm resource
 - Ryegrass/Cocksfoot/Prairie grass
 - Sandy soils
 - Good fertility
 - 16 paddocks
- Multiple mobs/silage

Lesters

- 60 ha
- Lileah (1,200 mm)
- Farm resource
 - Ryegrass/cocksfoot/white clover
 - Red soils
 - Good fertility
 - 24 paddocks
- 180 Trade cattle (average 300 kg)

Results – Physical

	Historical	PIRD Trial
Pasture eaten (kgDM/ha)	5,440	6,790
Pasture maintenance (kgDM/ha)	4,060	4,240
Pasture liveweight (kgDM/ha)	1,380	2,550
Pasture maintenance (%)	75	62
Pasture liveweight (%)	25	38

lain Bruce 2008 Masters Paper

Results – Economic

	Before	After
Income	\$319,000	\$532,000
Variable costs	\$129,000	\$167,000
Gross margin	\$191,000	\$364,000
Overhead costs	\$119,000	\$128,000
EBIT	\$72,000	\$237,000
RoC	1.8%	5.6%

lain Bruce 2008 Masters Paper

Practic

Results - skill

Case Study - Landfall

- Archer family
- Sheep and Cattle
- 700 mm rainfall

LANDFALL

700 mm rannan					ANGUS					
	2011	2012	2013	2014	2015	2016	2017	2018	2019	% Change
Total Effective Area (ha)	2,100	2,100	2,250	2,250	2,100	2,100	2,420	2,420	2,550	21%
Irrigated Area (ha)	220	220	220	250	250	250	260	280	280	27%
MWSR (DSE/ha)	11.8	14.1	14.3	13.3	15.3	15.2	14.1	14.7	15.9	42%
AASR (DSE/ha)	17.7	21.2	21.5	20.0	27.5	27.4	28.3	29.3	31.8	80%

Case Study - Nosswick

- Colvin family
- Sheep
- 550 mm rainfall

	2013	2014	2015	2016	2017	2018	2019	% Change
Total Effective Area (ha)	435	435	435	435	435	435	435	0%
Irrigated Area (ha)	200	200	200	200	200	200	200	0%
MWSR (DSE/ha)	9.0	13.3	14.9	16.9	17.6	17.9	17.9	99%
AASR (DSE/ha)	14.2	21.0	24.1	27.9	30.2	31.8	33.1	133%

Case Study - Skyhaven

- Chris MacQueen
- Breeder
- 750 mm rainfall

	2014	2015	2016	2017	2018	2019	2020	% change
Total effective area (ha)	640	818	885	922	950	955	955	49%
Irrigated area (ha)	0	0	0	0	0	0	0	0%
Breeders	585	687	873	905	955	1008	1100	88%
MWSR (DSE/ha)	9	10	12	13	15	18	20	122%
AASR (DSE/ha)	12	12	14	19	22	26	28	133%
Profit/ha (\$)	97	190	376	560	806	812	1,000	931%
ROC (%)	2.1	5.1	5.9	8.8	12.4	12	14	567%

Targets

- 1 tonne feed utilised per 100 mm rainfall
 - Feed an annual stocking rate of 3-3.5 DSE /ha/100mm
- 40% of pasture eaten to saleable product
- 80-90% diet as directly grazed feed
- 5% only of the farm renovated annually

Take home messages

- Increasing utilization means increasing stocking rate
 - Grow more better feed
 - Match demand and supply
- Increasing performance requires
 - Investment in infrastructure
 - Investment in capability
 - Measuring
- Don't confuse the method with the practice
 - No tool or method can compensate for poor management
- Rotational grazing based on morphology has the most potential for upside
 - Cost dependent

Tools and resources

- MLA Feedbase planning and budgeting tool
- MLA Stocking Rate Calculator
- <u>PGS Pasture Principles</u>
- PGS Gra\$\$ to Dollars
- MLA & SFS Pasture Paramedic

